

Grand Canyon Monitoring and Research Center

Biological Resources Program

Current Status and Trends
 Update for Humpback
 Chub (Gila cypha) in the
 Grand Canyon

Presentation Outline

- Stock Assessment/Population Dynamics
 Primer
- Partial History of HBC Research in Grand Canyon
- Current Status & Trends

Definitions

Stock Assessment

Stock assessment involves the use of various statistical and mathematical calculations to estimate the past and current abundance and productivity of a fish population. The ultimate goal of stock assessment is to construct quantitative predictions about the reactions of fish populations to alternative management choices.

Population Dynamics

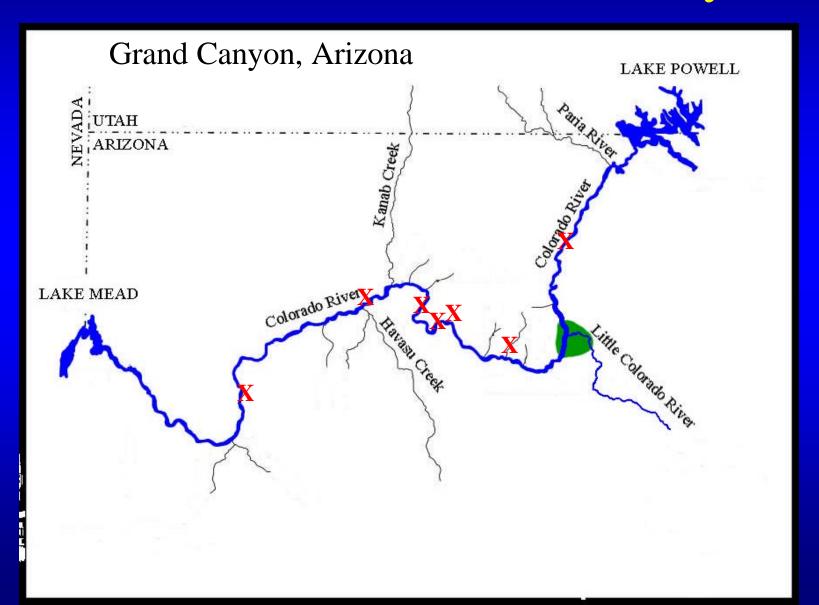
 Population dynamics is the study and mathematical representation of how and why a population changes.

Definitions

- Cohort or Year Class
 - Animals resulting from reproduction during a single year.
- Recruitment (Recruits)
 - All animals entering a particular size or age class of the population. Age 1 for Supertag Model, length >150mm
- Brood Year
 - Year in which a particular cohort was spawned.

Assessing Abundance

- Estimating Abundance via Mark-Recapture
 - Closed population models
 - Estimate abundance but not mortality or recruitment.
 - Open population models
 - Estimate abundance, mortality, or recruitment


Presentation Outline

- Stock Assessment/Population Dynamics Primer
- Partial History of HBC Research in Grand Canyon
- Current Status and Trends

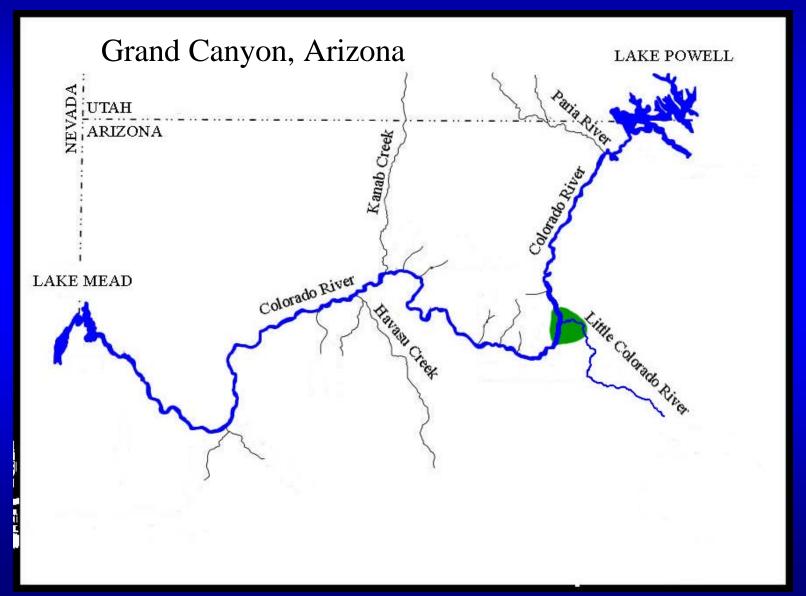
HBC Research in Grand Canyon

```
Species Description (Miller 1946).
1944
1944-80
            Various researchers documenting HBC
            occurrence and distribution (Stone and
            Rathbun 1967-69; Holden and Stalnaker
            1975; Suttkus and Clemmer 1977;
            Minckley and Blinn 1976; Minckley
            1975,1977, 1979; Carothers et al. 1981).
            LCR Investigations (Kaeding & Zimmerman
1980-82
            1983)
1984-87
            GCES Phase I (Maddux et al. 1987)
            LCR Investigations (Minckley1988,89,90;
1987-90
            Kubly 1990)
            Phase II (BioWest, USFWS, AGFD, ASU)
1990-95
1995-01
            Transitional/Monitoring (AGFD, USFWS,
            SWCA, ASU, Hualapai)
```

HBC Research in Grand Canyon

HBC Abundance Estimation Grand Canyon

Year	Month	Location	Size	Estimate	Source
1982	May	LCR	>200 mm	7500	Kaeding & Zimmerman (1982)
1987	May	LCR Confluence	>120 mm	5783	Minckley (1988)
1987	May	LCR Confluence	>140 mm	1800	Kubly (1990)
1988	May	LCR Confluence	>120 mm	7060	Minckley (1988)
1988	May	LCR Confluence	>140 mm	2900	Kubly (1990)
1989	May	LCR	>150 mm	18253	Minckley (1989)
1989	May	LCR Confluence	>150 mm	10120	Minckley (1989)
1989	May	LCR	>140 mm	25000	Kubly (1990)
1990	May	LCR Confluence	>150 mm	6492	Minckley (1990)
1990	May	LCR	>150 mm	11985	Minckley (1990)
1992	May	LCR Confluence	>150 mm	1320	Douglas and Marsh (1996)
1992	May	LCR	>150 mm	4508	Douglas and Marsh (1996)
2000	Oct.	LCR	>135 mm	1600	Coggins and Van Haverbeke (2001)
2001	May	LCR	>150 mm	2000	USFWS In Prep.

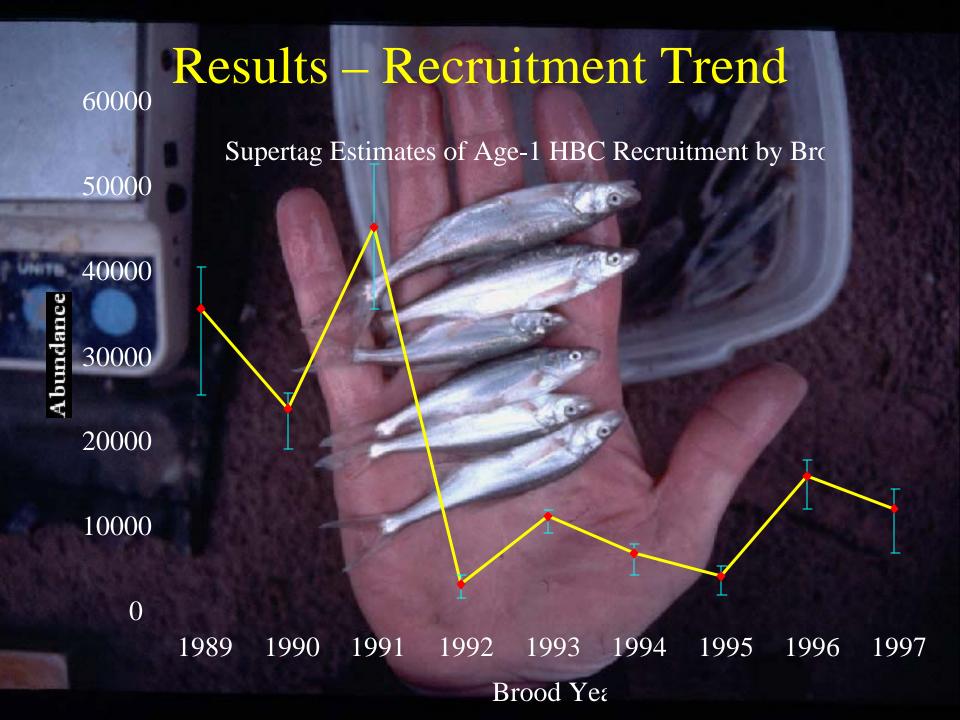

HBC Abundance Estimation Grand Canyon

Year	Month	Location	Size	Estimate	Source
1991-93	All	LCRI Aggregation	>200 mm	3000- 4000	Valdez and Ryel (1995); Closed Population Model
1991-93	All	LCRI Aggregation	>200 mm	3200	Valdez and Ryel (1995); Open Population Model
1991- 1993	?	MGG Aggregation	>200 mm	68-155	Valdez and Ryel (1995); Closed Population Model
1991-93	All	30-Mile Aggregation	>200 mm	55	Valdez and Ryel (1995); Closed Population Model
1991-93	All	Shinumo Inflow Aggregation	>200 mm	55	Valdez and Ryel (1995); Closed Population Model
1991-93	All	Havasu Inflow Aggregation	>200 mm	10	Valdez and Ryel (1995); Closed Population Model
1991-93	All	Pumpkin Spring Aggregation	>200 mm	5	Valdez and Ryel (1995); Closed Population Model

Presentation Outline

- Stock Assessment/Population Dynamics Primer
- Partial History of HBC Research in Grand Canyon
- Current Status and Trends

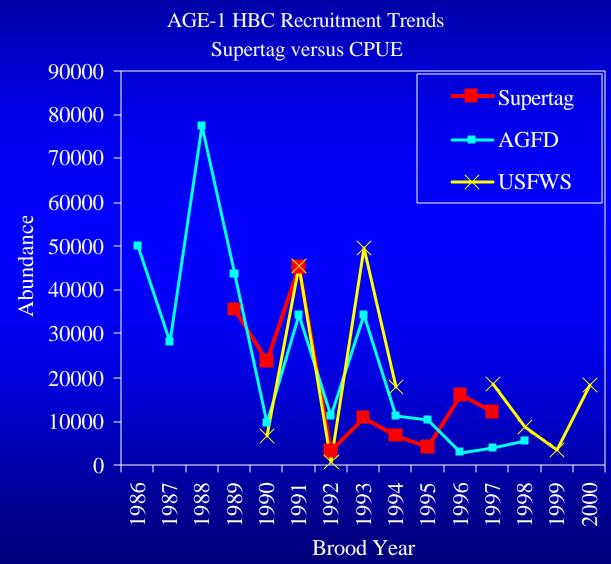
Background



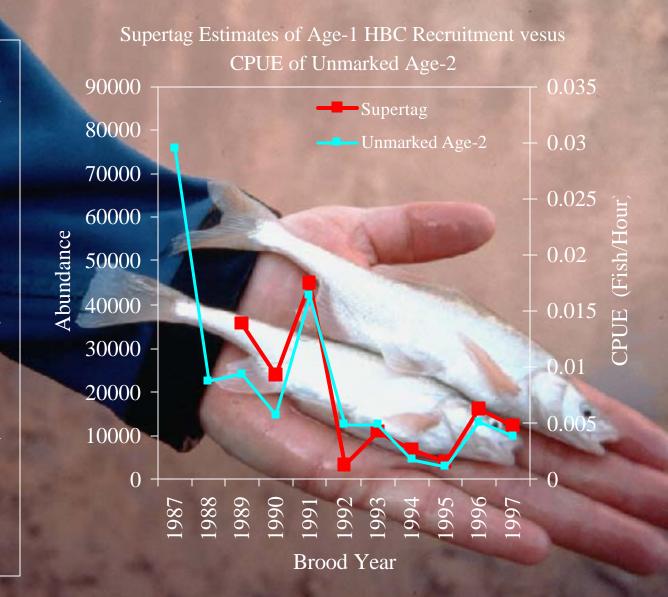
Motivation

- Little Colorado River HBC Population
 - Historical (even recent) studies not designed to determine status and trends of HBC popl'n
 - After 20+ years of study, we did not have a clear understanding about the status and trends of the population
 - Opportunity to reanalyze existing data to determine if it was possible to reconstruct population trends as well as develop consistent long term monitoring for status & trends

Methods – Data Types


- Mark-Recapture (PIT Tags)
 - 1989 2000 mark-recapture data from the Little Colorado River and mainstem Colorado River (RM 57 to 68).
 - 12,937 fish marked, 13,948 recaptures (includes multiple recaptures)

Results – Recruitment Trend

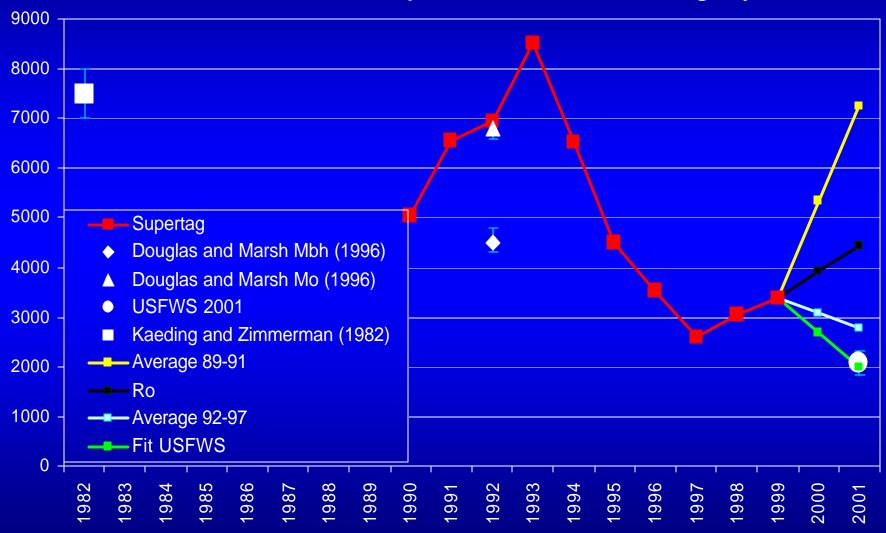

Independent Estimators

- Spring/Summer hoopnet CPUE indices of AGE-1 in the Little Colorado River
- AGFD data is longest and most consistent sampling protocols over time (lower 1200 meters)
- USFWS data primarily from two locations in the Little Colorado River (3 km and 11 km)
- Catch-rate scaled to abundance by calculating catchability coefficient

Results – Recruitment Trend

- Annual hoopnet CPUE of unmarked AGE-2 fish in the Little Colorado River
- Humpback chub reach tagging size (150 mm) at Age-2.
- Suggests 1993 cohort suffered increased mortality as compared to the 1991 cohort

How we sample and track a cohort: e.g. 1997 year class

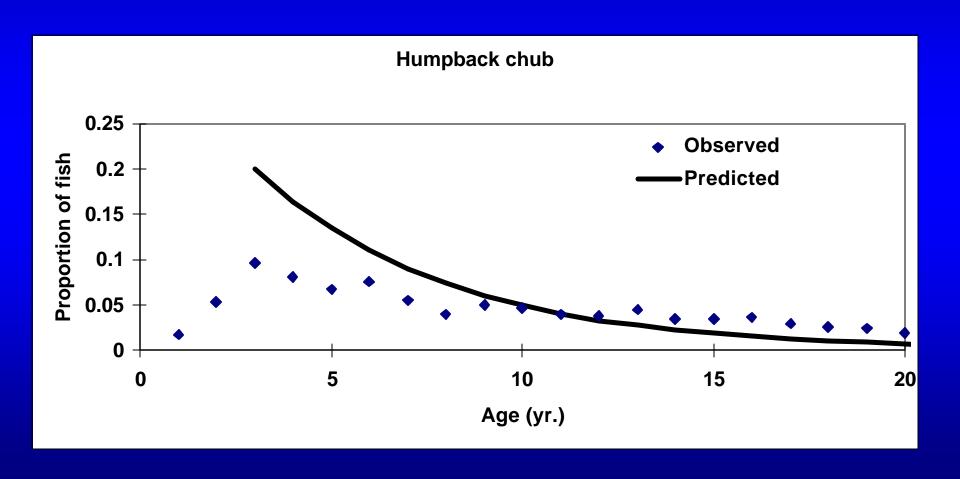

1997	1998	1999	2000	2001
HBC hatchin LCR and	1997 c oho rt a tta in sa ge 1, - f ir st	1997 c oho rt a tta in sa ge	1997 c oho rt m arked as age 1&2 first fully s ubject to	1997 cohort datafirst available

Population Trend

A consequence of chronic low recruitment may be a decline in the overall abundance of the population

Results – Abundance Trend

Estimated Abundance of Humpback Chub > 150 mm during May**



** Kaeding & Zimmerman estimate for HBC >200 mm

Conclusions – HBC Population Dynamics

- Data sources suggest that post-1993 recruitment is lower than pre-1992 recruitment.
- This lower recruitment rate is contributing to an overall decline in abundance for the LCR Humpback Chub population in Grand Canyon

Conclusions – HBC Population Dynamics

Conclusions – HBC Population Dynamics

- Data sources suggest that post-1993 recruitment is lower than pre-1992 recruitment.
- A Few Hypotheses:
 - Predation or Competition
 - Mainstem Colorado
 - Little Colorado River
 - Hydrology
 - Dam Operations (Interim flows August 1991, GCD EIS)
 - Little Colorado River Hydrology (1992 poor year class)
 - Parasitism
 - Asian Tapeworm
 - Is this just natural variability?
 - Others and interactions

Future Work & Collaborations

- GCMRC Cooperators-AGFD, USFWS, SWCA, Walters continue to refine long term monitoring strategy
- GCMRC working on expediting data analysis
- GCMRC participation in ES Population Estimation Workshop w/Upper Basin
- GCMRC to host workshop w/Upper Basin biologists to facilitate comparable methodologies

